

CSIRO in Australia

CSIRO is a Federal Government Agency.

Its annual budget of over \$900 million comes from the Federal Government and external sources.

CSIRO's research spans agriculture, food, environment, manufacturing industry, minerals, energy, information technology, health, infrastructure and services.

CSIRO's Mission Statement & Strategy

"By igniting the creative spirit of our people, we deliver great science and innovative solutions for industry, society and the environment."

CSIRO across Australia

CSIRO Molecular & Health Technologies: CMHT

- 4 Laboratories; 320 staff; multidisciplinary skills base
 - Melbourne
 - Clayton: synthetic chemistry, polymers, materials
 - Parkville: protein chemistry
 - Sydney (North Ryde): molecular and cellular biology
 - Adelaide: toxicology, animal models
- Access to Major Facilities
 - Australian Synchrotron (Clayton)
 - OPAL reactor (Menai)

CMHT Themes

- Biomaterials and Regenerative Medicine
 - The development and application of novel biodegradable and bioactive biomaterials suitable for the repair, replacement and regeneration of diseased or damaged body parts.
- Electroactive Materials
 - The development of new platform technologies for polymer electronics.
- Australian Biotech Growth Partnerships
 - Supporting Australian biotech SMEs, particularly in the agricultural and health biotech sectors.
- Nanobiotechnology-Sensing & Delivery
 - Development of smart nanomaterials with in-built biological functionality for targeted bioactive delivery and diagnostics

CMHT Achievements

dr manny noakes with dr peter clifton

the CSIRO total wellbeing

- the weight loss program that can actually work diet
- . a healthy eating plan for life

the new scientifically proven diet for Australians

CSIRO and CMHT Research Focus

CSIRO's research is focused and delivered in three major areas:

- Priority-driven core research
- National Research Flagships
- The Emerging Science Initiative (ESI)

Hierarchical Material Structures: Creating Novel 3-D Porous Particulate Systems by Developing Combinatorial and High-Throughput Methodologies

NIST-CSIRO Collaboration

High-through put characterisation of multicomponent complex systems (phase behaviour)

In the quest to rationally design advanced materials the challenge remains to deconvolute the relationship between structure, composition and function.

NIST-CSIRO Collaboration

High-through put characterisation for surfactant phase behaviour

- Phase diagrams contain the complete information on the thermodynamic and kinetic phase behaviour of a system in the most compact form.
- Phase diagrams of complex systems are, extremely scarce, largely due to the huge amount of tedious and painstaking work required to collect the data.
- A key scientific challenge is to reduce the time required to generate a phase diagram from weeks to a day or less.

CMHT-Philosophy for Mesophase Development

Devise Novel Surfactant Structures based on empirical literature observation and semi – empirical theory

Re-engineer structures

Synthesise

Screen Phase Behaviour Temperature ranges, phases etc.

Surfactant Self Assembly

They Spontaneously accumulate at interfaces, lowering interfacial tension

At higher concentrations, they self assemble in solution to form spherical aggregates: micelles

Further complex structures may form depending on molecular geometry and environmental conditions (temperature, concentration, salt etc.) = "Surfactant Phase Behaviour"

Surfactant Mesophase Structures

Mesophase Systems

Inverse **Hexagonal Phases**

Inverse **Cubic Phases**

- Bicontinuous networks
- ✓ Containment of aqueous and/or non polar species
- ✓ Unique 'nanoenvironments' for solubilization
- High Tortuosity for release
- √ 3-D high capacity for solutes (cf. liposomes)
- Stability against dilution & rupture proof

Dilutable Phase Behaviour

Glycerol Monooleate (Monoolein)

Phytantriol

Qui and Caffrey, *Biomaterials*, 21, 2000, 223-234

Barauskas and Landh, *Langmuir*, 19, 2003, 9562-9565

Inverse Phases: Wedge Shaped Molecules

To obtain high (-) interfacial curvature wedge shaped molecules with relatively small head group area and large chain cross sectional area are required.

Strategies for increasing CPP include:

- branching (positional isomerism)
- unsaturation
- multiple hydrophobe attachment

Monoolein

Engineered Mesophases

Urea

Fong and Drummond et. al. Chem. Mater., 18, 594-597, 2006 Fong and Hartley et. al. Aust. J. Chem., 58, 683-687, 2005 Boyd, B.B., et. al. PCT WO 2004/022530A1

Engineered Mesophases

LPM oleyl glycerate

Colloidosomes

Drug Release from Engineered Mesophases

- Sustained release of anti-cancer agents irinotecan base/HCI (hydrophilic) and paclitaxel (lipophilic) from bulk phase of Oleyl glycerate. This suggests potential for depot formulations.
- b) Encapsulation does not alter phase behaviour

Polyvalent Mesophases

- Polyvalent ligands incorporated as co-surfactants to 'mop up' receptor sites to block adverse cellular interaction (eg. ricin)
- High density of surface binding sites
- In diffusion and entrapment within mesophase

Polyvalent Mesophases for Ricin Remediation

Phytanol

Surfactant Mesophases for Bioaffinity Separations

Composition	% Ricin Removed
Phytantriol (Control)	8.6
Inverse Hexagonal Mesophase Mixtures	
40% Galactose-6-phytanoate/ Phytanyl glycerate	12.2
50% Phytanyl β-1-galactoside/ Phytanyl glycerate	22.4
20% Oleyl α-1-galactoside / Oleyl Glycerate	39.6
Inverse Cubic Mesophase Mixtures	
40% Galactose-6-oleate/Oleyl glycerate	40.5
40% Oleyl α-1-galactoside / 60% oleyl glycerate	80.3
40% Oleyl β-1-galactoside/Oleyl glycerate	85.1
40% Phytanyl β-1-galactoside / 60% Phytantriol	90.3
30% Oleyl α-1-galactoside / phytantriol	91.3

Dawson, R.; et. al. Journal of Applied Toxicology (Published online on 17th Feb 2006)

Acknowledgements

CSIRO Molecular & Health Technologies

Patrick Hartley Irena Krodkiewska Darrell Wells Tash Polyzos Jamie Booth Calum Drummond Russell Tait

MaynePharma

Ben Boyd Greg Davey Mei Khoo Micheal Robertson Darryl Whittaker Annette Murphy

University of Queensland Alasdair McDowall

DSTO

Mike Alderton Ray Dawson

NIST-NCMC

Eric Amis Michael Fasolka Kathryn Beers Tom Chastek Susan Barnes Kirt Page

CSIRO: People & Infrastructure

- CSIRO ranks in the top 1% of world scientific institutions in 11 of 22 research fields
- 60% of our staff hold university degrees
 - >1800 doctorates
 - > 430 masters' degrees
- Citations per publication are 30% above world average
- More than 160 companies are based on CSIRO intellectual property

Physico-Chemical Characterisation

Water penetration scans: Light polarising microscopy

Small Angle Scattering -SAS

Incubate with Mesophase

Take supernatant, incubate with asialofetuin

IgG - AP Rabbit Anti-ricin

Wash and probe with ELISA, Correlate wrt. [ricin] calibration curve

Dawson et. Al.. J. Appl. Toxicol. 19, 307-312 (1999)

Bicontinuous Cubic Phases

